Tilt Correction Toward Building Detection of Remote Sensing Images

نویسندگان

چکیده

Building detection is a crucial task in the field of remote sensing, which can facilitate urban construction planning, disaster survey, and emergency landing. However, for large-size sensing images, great majority existing works have ignored image tilt problem. This problem result partitioning buildings into separately oblique parts when images are partitioned. not beneficial to preserve semantic completeness building objects. Motivated by above fact, we first propose framework detecting objects image, particularly detection. The mainly consists two phases. In phase, correction (TC) algorithm, contains three steps: texture mapping, angle assessment, rotation. second performed with object detectors, especially deep-neural-network-based methods. Last but least, results will be inversely mapped original image. Furthermore, challenging dataset named Aerial Image Detection contributed public research. To evaluate TC method, also define an evaluation metric compute cost partition. experimental demonstrate effects proposed method

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted change detection in remote sensing images

Recent developments in the remote sensing systems and image processing made it possible to propose a new method of the object classification and detection of the specific changes in the series of satellite Earth images (so called targeted change detection). In this paper we propose a formal problem statement that allows to use effectively the deep learning approach to analyze time-dependent ser...

متن کامل

Building Semantic Ontology Databases Based on Remote Sensing Images

This paper puts forward a novel method of automatically generating elements which is necessary for building sharing ontology database and studies the uncertainty problems. A concept called sharing ontology is proposed which is defined as a bridge of all kinds of spatial information systems involving domain spatial data acquiring, updating, transferring, storing, processing, analyzing, informati...

متن کامل

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

Learning Oriented Region-based Convolutional Neural Networks for Building Detection in Satellite Remote Sensing Images

The automated building detection in aerial images is a fundamental problem encountered in aerial and satellite images analysis. Recently, thanks to the advances in feature descriptions, Region-based CNN model (R-CNN) for object detection is receiving an increasing attention. Despite the excellent performance in object detection, it is problematic to directly leverage the features of R-CNN model...

متن کامل

Segment-Based Terrain Filtering Technique for Elevation-Based Building Detection in VHR Remote Sensing Images

Building detection in very high resolution (VHR) remote sensing images is crucial for many urban planning and management applications. Since buildings are elevated objects, the incorporation of elevation data provides a mean to reliable detection. However, almost all existing methods of elevation-based building detection must first generate a normalized Digital Surface Model (nDSM). This model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2021

ISSN: ['2151-1535', '1939-1404']

DOI: https://doi.org/10.1109/jstars.2021.3083481